

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

## Infrared and Raman Spectra of Pentamethylene Sulfoxide

Y. Hase<sup>a</sup>; Y. Kawano<sup>b</sup>

<sup>a</sup> Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil <sup>b</sup> Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil

**To cite this Article** Hase, Y. and Kawano, Y.(1978) 'Infrared and Raman Spectra of Pentamethylene Sulfoxide', *Spectroscopy Letters*, 11: 3, 161 — 171

**To link to this Article: DOI:** 10.1080/00387017808067743

**URL:** <http://dx.doi.org/10.1080/00387017808067743>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

INFRARED AND RAMAN SPECTRA OF PENTAMETHYLENE SULFOXIDE

Key Words: IR and Raman spectra, Pentamethylene sulfoxide

Y. Hase,

Instituto de Química, Universidade Estadual de Campinas,  
C. P. 1170, Campinas, SP, Brazil

Y. Kawano,

Instituto de Química, Universidade de São Paulo,  
C. P. 20780, São Paulo, SP, Brazil

ABSTRACT

The IR spectra of pentamethylene sulfoxide were recorded in the frequency region from 4000 to  $250\text{ cm}^{-1}$  in the solid phase. The Raman spectra were recorded from 4000 to  $100\text{ cm}^{-1}$  in the solid and liquid phases and the polarization measurements were carried out in the liquid phase. The observed IR and Raman bands were assigned on the assumption of a  $C_s$  chair form and compared with the fundamental frequencies of pentamethylene sulfide.

## INTRODUCTION

In the recent coordination chemistry studies, pentamethylene sulfoxide,  $\text{CH}_2(\text{CH}_2\text{CH}_2)_2\text{S}=\text{O}$ , henceforth called PMSO, has been used as a ligand and the vibrational frequency shifts from free ligand to coordinated PMSO, particularly the  $\text{S}=\text{O}$  stretching vibration, have been used to discuss the coordination effects. However, a detailed vibrational study of the IR and Raman spectra of free PMSO has not yet been carried out. Vedral et al. (1) studied, in 1975, the vibrational spectra of pentamethylene fulfide, PMS, which has the same skeletal ring system, and the observed bands were assigned on the assumption of a  $\text{C}_s$  molecular symmetry. The molecular symmetry of PMSO can also be assumed to be the  $\text{C}_s$  chair form and it is confirmed by comparison of the observed spectra of PMSO and PMS.

In the present paper, the IR and Raman spectra of PMSO are reported and the observed bands are assigned tentatively, by comparison with the fundamental frequencies of PMS, considering the Raman polarization ratios. The frequency differences between the fundamental vibrations of PMSO and PMS are discussed using terms of the mechanical coupling among the skeletal ring modes and the  $\text{S}=\text{O}$  modes.

## EXPERIMENTAL

PMSO was obtained commercially and distilled twice for the present IR and Raman study.

The IR spectra were recorded in the frequency region from 4000 to  $250\text{ cm}^{-1}$  with a Perkin-Elmer 180 spectrophotometer for the solid state sample, which was prepared by crystallization of the fused compound between two CsI plates.

The Raman spectra were recorded in the region from 4000 to  $100\text{ cm}^{-1}$  with a Jarrell-Ash 25-300 spectrometer using the 4880 and  $5145\text{ \AA}$  lines of an argon ion laser for excitation. The solid PMSO was measured in the capillary cell by usual method and the liquid PMSO was measured for the fused compound in the capillary cell by heating system.

## RESULTS AND DISCUSSION

The observed IR and Raman frequencies for PMSO are given in Table I, with the assignment tentatively made. In Table II, the fundamental frequencies of PMSO and PMS are compared, using the approximate descriptions for vibrational modes.

Forty-five fundamental vibrations can be divided into two symmetry species,  $25a'$  and  $20a''$ , and all of them are active in the

TABLE I

Vibrational spectral data for pentamethylene sulfoxide

| infrared |         | Raman   |   |                              | assignment    |
|----------|---------|---------|---|------------------------------|---------------|
| solid    | solid   | liquid  |   |                              |               |
| 2957 sh  | 2960 s  | 2952 sh | P | $\nu_1, \nu_{26}$            | $a', a''$     |
| 2932 vs  | 2934 s  | 2933 s  | P | $\nu_2, \nu_3, \nu_{27}$     | $a', a', a''$ |
| 2915 sh  | 2916 s  | 2914 vs | P | $\nu_4$                      | $a'$          |
| 2899 sh  | 2898 vw |         |   | $\nu_{28}$                   | $a''$         |
| 2873 sh  | 2876 vw |         |   | $\nu_5, \nu_{29}$            | $a', a''$     |
| 2860 s   | 2855 w  | 2855 w  | P | $\nu_6$                      | $a'$          |
| 2827 sh  |         |         |   | $2\nu_9 = 2836$              | $A'$          |
| 2808 sh  |         |         |   | $2\nu_{31} = 2816$           | $A'$          |
| 1457 vw  | 1453 vw |         |   | $\nu_7$                      | $a'$          |
| 1440 vs  | 1442 m  | 1444 m  | P | $\nu_8$                      | $a'$          |
| 1422 m   |         |         |   | $\nu_{30}$                   | $a''$         |
| 1418 s   | 1415 m  | 1414 m  | P | $\nu_9$                      | $a'$          |
| 1408 vw  |         |         |   | $\nu_{31}$                   | $a''$         |
| 1378 vw  |         |         |   | $2\nu_{42} = 1388$           | $A'$          |
| 1367 vw  |         |         |   | $\nu_{39} + \nu_{43} = 1369$ | $A'$          |
| 1352 vw  | 1350 w  | 1350 w  | ? | $\nu_{10}$                   | $a'$          |
| 1337 m   |         |         |   | $\nu_{32}$                   | $a''$         |
| 1310 m   | 1310 w  | 1309 w  | P | $\nu_{11}, \nu_{33}$         | $a', a''$     |
| 1283 vw  | 1287 vw |         |   | $\nu_{17} + \nu_{23} = 1283$ | $A'$          |
| 1279 vw  |         |         |   | $\nu_{34}$                   | $a''$         |
| 1260 vw  | 1262 w  | 1263 vw | ? | $\nu_{35}$                   | $a''$         |
| 1246 m   | 1242 w  | 1245 w  | P | $\nu_{12}$                   | $a'$          |
| 1231 w   | 1233 w  |         |   | $2\nu_{20} = 1238$           | $A'$          |
| 1209 m   | 1214 w  | 1203 w  | P | $\nu_{13}$                   | $a'$          |
| 1192 sh  | 1190 sh |         |   | $\nu_{15} + \nu_{25} = 1190$ | $A'$          |
| 1171 vw  |         |         |   | $\nu_{18} + \nu_{44} = 1173$ | $A''$         |

(continued...)

TABLE I  
(continued)

| infrared<br>solid | Raman   |        |   | assignment                       |
|-------------------|---------|--------|---|----------------------------------|
|                   | solid   | liquid |   |                                  |
| 1141 m            | 1139 w  | 1140 w | ? | $\nu_{36}$ a''                   |
| 1110 vw           | 1119 vw |        |   | $\nu_{41} + \nu_{44} = 1110$ A'  |
| 1092 vw           | 1092 vw |        |   | $\nu_{37}$ a''                   |
| 1072 s            | 1066 m  | 1067 m | P | $\nu_{14}$ a'                    |
| 1041 vw           |         |        |   | $\nu_{20} + \nu_{43} = 1051$ A'' |
| 1032 vs           | 1024 s  | 1034 s | P | $\nu_{15}, \nu_{38}$ a', a''     |
| 993 vs            | 997 s   | 999 s  | P | $\nu_{20} + \nu_{23} = 1020$ A'  |
| 954 s             | 956 w   | 957 w  | P | $\nu_{16}$ a'                    |
| 937 vw            | 944 m   | 936 w  | D | $\nu_{39}$ a''                   |
| 882 s             | 887 w   | 888 w  | ? | $\nu_{17}, \nu_{40}$ a', a''     |
| 843 m             | 843 w   |        |   | $\nu_{18}$ a'                    |
| 814 sh            | 815 s   | 815 s  | P | $\nu_{19}$ a'                    |
| 803 w             |         |        |   | $2\nu_{23} = 802$ A'             |
| 780 w             | 782 w   |        |   | $\nu_{41}$ a''                   |
| 694 s             | 694 m   | 692 m  | D | $\nu_{42}$ a''                   |
| 652 m             | 653 s   | 652 s  | P | $2\nu_{44} = 660$ A'             |
| 633 s             | 632 vs  | 630 sh | ? | $\nu_{43} + \nu_{45} = 634$ A'   |
| 619 w             | 618 vs  | 614 vs | P | $\nu_{20}$ a'                    |
| 552 s             | 554 w   | 558 w  | ? | $2\nu_{24} = 564$ A'             |
| 513 m             | 514 w   | 513 m  | P | $\nu_{21}$ a'                    |
| 444 vs            | 445 w   | 445 w  | ? | $\nu_{22}$ a'                    |
| 432 s             | 434 m   | 430 w  | ? | $\nu_{43}$ a''                   |
| 401 w             | 401 s   | 400 s  | P | $\nu_{23}$ a'                    |
| 358 vw            | 362 vw  |        |   | $\nu_{14} - \nu_{42} = 378$ A''  |
| 347 w             | 347 w   | 348 w  | ? | $\nu_{25} + \nu_{45} = 360$ A''  |
| 330 m             | 331 s   | 330 m  | ? | $\nu_{44}$ a''                   |

(continued...)

TABLE I  
(continued)

| infrared |       | Raman   |  | assignment           |
|----------|-------|---------|--|----------------------|
| solid    | solid | liquid  |  |                      |
| 304 w    |       |         |  | $2\nu_{25} = 316$ A' |
| 282 s    | 276 m | 278 m P |  | $\nu_{24}$ a'        |
|          | 202 m | 200 m D |  | $\nu_{45}$ a''       |
|          | 158 m | 152 m P |  | $\nu_{25}$ a'        |

both IR and Raman spectra. The a' Raman bands are expected to be polarized in the liquid phase spectra.

There are ten  $\text{CH}_2$  stretching modes, in which five are the symmetric vibrations and other five the asymmetric ones, and they are expected in the range from 2960 to  $2850 \text{ cm}^{-1}$ . These modes are assigned to the bands at 2957, 2932, 2915, 2899, 2873 and 2860  $\text{cm}^{-1}$  by some accidental degeneracies. The frequencies assigned are comparable with those of PMS.

For the  $\text{CH}_2$  deformations, there are five scissoring, five wagging, five twisting and five rocking vibrations and they can be easily assigned by comparison with PMS, but it is notable that some frequency differences between the rocking modes of PMSO and PMS are not so slight because of the mechanical coupling with the skeletal ring deformations (1-5). The  $\text{CH}_2$  scissoring vibrations of

TABLE II  
Fundamental frequencies of PMSO

|     |            | PMSO <sup>*</sup>   | PMS <sup>**</sup> |      |      | PMSO <sup>*</sup> | PMS <sup>**</sup>   |
|-----|------------|---------------------|-------------------|------|------|-------------------|---------------------|
| a': | $\nu_1$    | $\nu\text{CH}_2$    | 2957              | 2948 | a'': | $\nu_{26}$        | $\nu\text{CH}_2$    |
|     | $\nu_2$    | $\nu\text{CH}_2$    | 2932              | 2929 |      | $\nu_{27}$        | $\nu\text{CH}_2$    |
|     | $\nu_3$    | $\nu\text{CH}_2$    | 2932              | 2929 |      | $\nu_{28}$        | $\nu\text{CH}_2$    |
|     | $\nu_4$    | $\nu\text{CH}_2$    | 2915              | 2904 |      | $\nu_{29}$        | $\nu\text{CH}_2$    |
|     | $\nu_5$    | $\nu\text{CH}_2$    | 2873              | 2878 |      | $\nu_{30}$        | $\delta\text{CH}_2$ |
|     | $\nu_6$    | $\nu\text{CH}_2$    | 2860              | 2849 |      | $\nu_{31}$        | $\delta\text{CH}_2$ |
|     | $\nu_7$    | $\delta\text{CH}_2$ | 1457              | 1451 |      | $\nu_{32}$        | $\omega\text{CH}_2$ |
|     | $\nu_8$    | $\delta\text{CH}_2$ | 1440              | 1440 |      | $\nu_{33}$        | $\omega\text{CH}_2$ |
|     | $\nu_9$    | $\delta\text{CH}_2$ | 1418              | 1426 |      | $\nu_{34}$        | $\omega\text{CH}_2$ |
|     | $\nu_{10}$ | $\omega\text{CH}_2$ | 1352              | 1348 |      | $\nu_{35}$        | $\tau\text{CH}_2$   |
|     | $\nu_{11}$ | $\omega\text{CH}_2$ | 1310              | 1299 |      | $\nu_{36}$        | $\tau\text{CH}_2$   |
|     | $\nu_{12}$ | $\tau\text{CH}_2$   | 1246              | 1237 |      | $\nu_{37}$        | $\tau\text{CH}_2$   |
|     | $\nu_{13}$ | $\tau\text{CH}_2$   | 1209              | 1215 |      | $\nu_{38}$        | $\nu\text{C-C}$     |
|     | $\nu_{14}$ | $\nu\text{C-C}$     | 1072              | 1061 |      | $\nu_{39}$        | $\nu\text{C-C}$     |
|     | $\nu_{15}$ | $\nu\text{S=O}$     | 1032              | —    |      | $\nu_{40}$        | $\rho\text{CH}_2$   |
|     | $\nu_{16}$ | $\rho\text{CH}_2$   | 954               | 965  |      | $\nu_{41}$        | $\rho\text{CH}_2$   |
|     | $\nu_{17}$ | $\rho\text{CH}_2$   | 882               | 897  |      | $\nu_{42}$        | $\nu\text{C-S}$     |
|     | $\nu_{18}$ | $\rho\text{CH}_2$   | 843               | 826  |      | $\nu_{43}$        | $\delta\text{ring}$ |
|     | $\nu_{19}$ | $\nu\text{C-C}$     | 814               | 813  |      | $\nu_{44}$        | $\rho\text{S=O}$    |
|     | $\nu_{20}$ | $\nu\text{C-S}$     | 619               | 656  |      | $\nu_{45}$        | $\delta\text{ring}$ |
|     | $\nu_{21}$ | $\delta\text{ring}$ | 513               | 504  |      |                   |                     |
|     | $\nu_{22}$ | $\delta\text{ring}$ | 444               | 359  |      |                   |                     |
|     | $\nu_{23}$ | $\omega\text{S=O}$  | 401               | —    |      |                   |                     |
|     | $\nu_{24}$ | $\delta\text{ring}$ | 282               | 344  |      |                   |                     |
|     | $\nu_{25}$ | $\delta\text{ring}$ | 158               | 194  |      |                   |                     |

\* This work. \*\* Reference 1.

$a'$  species are assigned to bands at 1440 and  $1418\text{ cm}^{-1}$  which are polarized and the remaining one to the very weak band at  $1457\text{ cm}^{-1}$ . Those of  $a''$  species are at 1422 and  $1408\text{ cm}^{-1}$ . Two  $a'$  and three  $a''$  wagging vibrations are assigned at 1352, 1310, 1337, 1310 and  $1279\text{ cm}^{-1}$ , respectively, and  $\nu_{11}$  and  $\nu_{33}$  are accidentally degenerate. Two polarized Raman bands at 1245 and  $1203\text{ cm}^{-1}$  are attributed to the twisting vibrations of  $a'$  species, and other twisting vibrations of  $a''$  species are at 1260, 1141 and  $1092\text{ cm}^{-1}$ . The rocking vibrations are expected below  $1000\text{ cm}^{-1}$  and attributed to bands at 954, 882, 843 and  $780\text{ cm}^{-1}$ .

The  $S=0$  stretching vibration is expected at about  $1000\text{ cm}^{-1}$ . The observed spectra show two strong bands at 1032 and  $993\text{ cm}^{-1}$  and both bands are polarized in the liquid Raman spectra. Considering the  $S=0$  stretching frequency of 1,4-thioxan oxide (6), this mode is assigned at  $1032\text{ cm}^{-1}$  and it is coupled by Fermi resonance with the band at  $993\text{ cm}^{-1}$ .

PMSO has four C-C stretching vibrations and it is easy to assign these modes by comparison with those of PMS. Two  $a'$  modes are assigned to bands at 1072 and  $814\text{ cm}^{-1}$  which are the polarized Raman bands, and two  $a''$  modes at 1032 and  $937\text{ cm}^{-1}$ .

The C-S stretching vibrations of  $a'$  and  $a''$  species are assigned to bands at 619 and  $694\text{ cm}^{-1}$ , respectively. The  $a'$  mode is coupled with two bands at 652 and  $633\text{ cm}^{-1}$  by Fermi resonance. The  $a'$  mode shows the low frequency shift from that of PMS, though the

$\alpha''$  mode gives almost the same frequency. It may be explained by the mechanical coupling with the S=O stretching vibration.

Five skeletal deformations of  $\alpha'$  species are expected in the frequency region below  $600\text{ cm}^{-1}$ . The comparison with those of PMS is not adequate in this case because of the different degrees of mechanical coupling among them. The Raman polarization shows that the bands at 513, 400, 278 and  $152\text{ cm}^{-1}$  can be considered to be  $\alpha'$  species and they may be the fundamental bands because of relative strong intensities. The remaining one of  $\alpha'$  species is at  $444\text{ cm}^{-1}$ . Three skeletal deformations of  $\alpha''$  species are assigned to the intense bands which have not yet been attributed to  $\alpha'$  species. They are at 432, 330 and  $202\text{ cm}^{-1}$ .

Comparing the observed fundamental frequencies of PMSO and PMS, it is notable that the S=O bond making influences the vibrations in terms of the mechanical coupling and the kinetic energy adjustment, but the potential energy distributions on the skeletal ring are not so perturbed. The slight frequency shifts only for the  $\text{CH}_2$  vibrations and ring stretching vibrations, from PMS to PMSO, suggests the  $\text{C}_s$  chair form may be proposed for the molecular structure.

For the conformation analysis, axial or equatorial, it is already known that the S=O stretching frequency of axial form is lower than that of equatorial form (7). The former is expected in the region about  $1020\text{ cm}^{-1}$ , and the latter in the region about 1040

$\text{cm}^{-1}$ . The S=0 stretching frequency for PMSO is  $1032 \text{ cm}^{-1}$  and it is difficult to determine the conformation directly. When the Fermi resonance is considered between the bands at  $1032$  and  $993 \text{ cm}^{-1}$ , the frequency corrected is lowered and the axial conformation may be suggested. The conformation changing between the solid and liquid phases can not be observed on the frequency or intensity shifts in the observed Raman spectra.

#### ACKNOWLEDGEMENTS

The authors are grateful to V. K. L. Osório for preparing the sample and to O. Sala for permission to use the spectrometers.

#### REFERENCES

1. D. Vedal, O. H. Ellestad, P. Klaboe and G. Hagen, Spectrochim. Acta, 31A, 355 (1975).
2. P. Klaboe, Spectrochim. Acta, 25A, 1437 (1969).
3. O. H. Ellestad, P. Klaboe and G. Hagen, Spectrochim. Acta, 28A, 137 (1972).
4. O. H. Ellestad, P. Klaboe, G. Hagen and T. S. Hausen, Spectrochim. Acta, 28A, 149 (1972).
5. D. Vedal, O. H. Ellestad, P. Klaboe and G. Hagen, Spectrochim. Acta, 31A, 339 (1975).

6. Y. Hase and Y. Kawano, to be published.

7. P. B. D. De la Mare, D. J. Millen, J. G. Tillett and D. Watson,

J. Chem. Soc., 1963, 1619.